30 research outputs found

    Sequential approaches for learning datum-wise sparse representations

    Get PDF
    International audienceIn supervised classification, data representation is usually considered at the dataset level: one looks for the "best" representation of data assuming it to be the same for all the data in the data space. We propose a different approach where the representations used for classification are tailored to each datum in the data space. One immediate goal is to obtain sparse datum-wise representations: our approach learns to build a representation specific to each datum that contains only a small subset of the features, thus allowing classification to be fast and efficient. This representation is obtained by way of a sequential decision process that sequentially chooses which features to acquire before classifying a particular point; this process is learned through algorithms based on Reinforcement Learning. The proposed method performs well on an ensemble of medium-sized sparse classification problems. It offers an alternative to global sparsity approaches, and is a natural framework for sequential classification problems. The method extends easily to a whole family of sparsity-related problem which would otherwise require developing specific solutions. This is the case in particular for cost-sensitive and limited-budget classification, where feature acquisition is costly and is often performed sequentially. Finally, our approach can handle non-differentiable loss functions or combinatorial optimization encountered in more complex feature selection problems

    Apprentissage par renforcement rapide pour des grands ensembles d'actions en utilisant des codes correcteurs d'erreur

    Get PDF
    National audienceL'utilisation de l'apprentissage par renforcement (AR) pour la résolution de problèmes réalistes se heurte à des questions de passage à l'échelle. La plupart des algorithmes d'AR sont incapables de gérer des problèmes avec des centaines, voire des milliers d'actions, ce qui en limite l'application dans la pratique. Nous considérons le problème d'AR dans le cadre de l'apprentissage supervisé où la politique optimale est obtenue sous la forme d'un classeur multi-classes, l'ensemble des classes correspondant à l'ensemble des actions du problème. Nous introduisons l'utilisation de codes correcteurs d'erreurs (CCE) dans ce contexte et proposons deux nouvelles méthodes pour réduire la complexité de l'apprentissage en utilisant des approches à base de rollouts. La première de ces méthodes consiste à introduire un classeur basé sur des CCE comme classeur multi-classes, ce qui réduit la complexité de l'apprentissage de O(A^2 ) a O(A log(A)). Ensuite, nous proposons une seconde méthode qui met à profit le dictionnaire de codage du CCE pour découper le PDM initial en O(log(A)) PDM à 2 actions. Cette seconde méthode réduit la complexité de l'apprentissage de O(A^2) a O(log(A)) ce qui permet de traiter en des temps très raisonnables des problèmes avec un grand nombre d'actions. Nous terminons avec une démonstration expérimentale de l'intérêt de notre approche
    corecore